Hot off the press: An inflation news index for the Philippines using reinforced lexicons and memory-based deep learning

Ma. Ellysah Joy T. Guliman, Alan Chester T. Arcin, Jacqueline Margaux G. Herbo, Sanjeev A. Parmanand and Genna Paola S. Centeno, Cherrie R. Mapa

Bangko Sentral ng Pilipinas

CBSL International Research Conference 13 December 2024

\*The views expressed in this paper are those of the authors and do not necessarily reflect those of the BSP. Any errors and omissions are the sole responsibility of the authors.



## **Objectives and Motivation**



This study is motivated by the following information:

- The news contain information that may influence the decision and behavior of economic agents
- Inflation expectations of consumers and investors could drive the future path of actual inflation
- Measures of inflation expectations have been mostly surveybased, which is costly and comes at a lag



### **Research Objectives:**

- To construct an additional high-frequency indicator of macroeconomic monitoring and surveillance
- 2. To complement the actual monthly consumer price index (CPI) and BSP Survey of External Forecasters (BSEF).



The Inflation News Index (INI) is a quantitative summary of digital news coverage on inflation and prices of goods and services.





### **Data Sources and Annotation**

### **Data Sources**



### **Annotation of sentences**



#### **Total: 3000 sentences**

Class 1: Increase: 1,803 Class 2: Decrease: 659

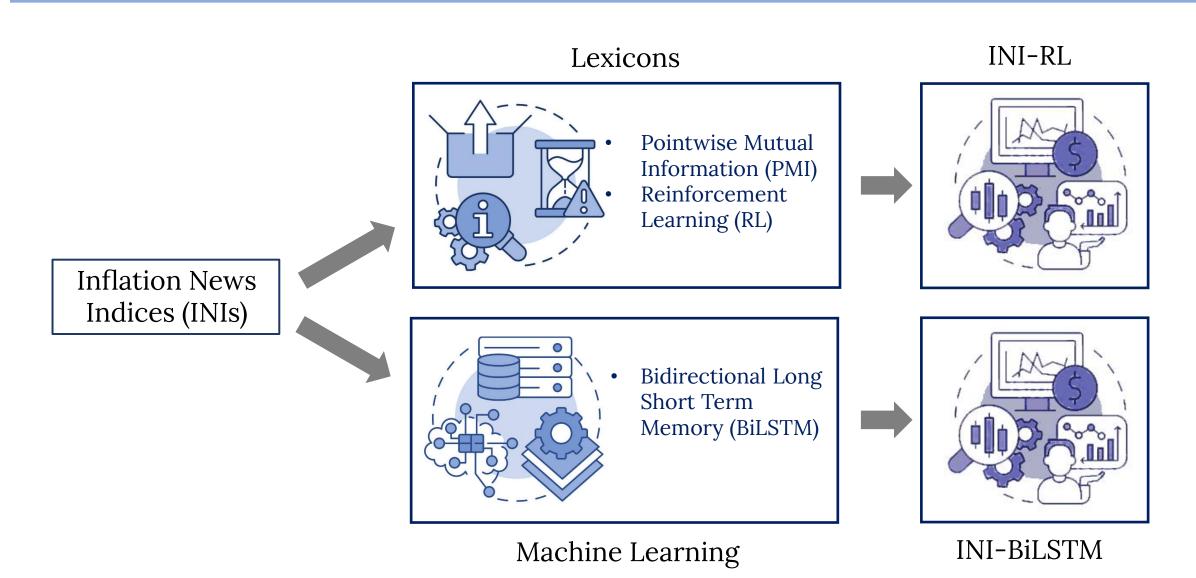
Class 3: Unchanged/Irrelevant: 538

**Problem: Imbalanced Classes** 

#### **Solution:**

#### Modify train and test datasets (Undersampling)

- Train dataset: 1000 (inc), 500 (dec), 500(no change/irrelevant)
- Test dataset: 803 (inc), 159 (dec), 38 (no change/irrelevant)




|                    | Train dataset | Test dataset |
|--------------------|---------------|--------------|
| Increase           | 1000          | 803          |
| Decrease/No change | 1000          | 197          |

#### **SMOTE (Oversampling)**

This technique synthesizes new samples of the minority class based on the nearest neighbors in the feature space.

### **Inflation News Indices**



## Sentence Sentiment Labelling

## 1 Dictionary-based approach

Pointwise Mutual Information



 Measure of association between two words or between words and classes

$$OPMI(w|c) = \log\left(\frac{p(w|c)}{p(w)*p(c)}\right)$$

Overall PMI score

$$-Score(w) = PMI(w|increase) - PMI(w|decrease)$$



# **Data Cleaning Processing**

### **Pre-processing Procedures**

- 1. Exclusion of ads and sponsored articles
- 2. Deletion of "lede" (the first paragraph summarizing the article)
- 3. Removal of extra spaces in the text
- 4. Conversion to lowercase
- 5. Removal of unwanted punctuation marks
- 6. Conversion of Unicode characters to ASCII
- 7. Tokenization of articles into sentences/words

### **Additional Procedures**

Part-of-Speech (POS) Tagging

Shortage VBN

Surging JJ

Named Entity Recognition

Dakila PERSON BSP ORG



### **Dictionaries**

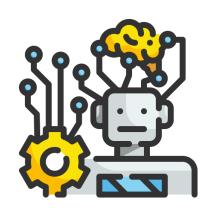
Initial Dictionary (Top 300 PMI Scores)

Words associated with decrease

slower, pulled, declines, appreciation, downward, tariffication, arrival, decline, benefit, downtrend, slowed, decreased, ....

Words associated with increase

depreciation, shortage, triggered, potential, reform, conflict, implement, premium, region, rising, faster, additional, ...


Dictionary w/ Reinforcement Learning

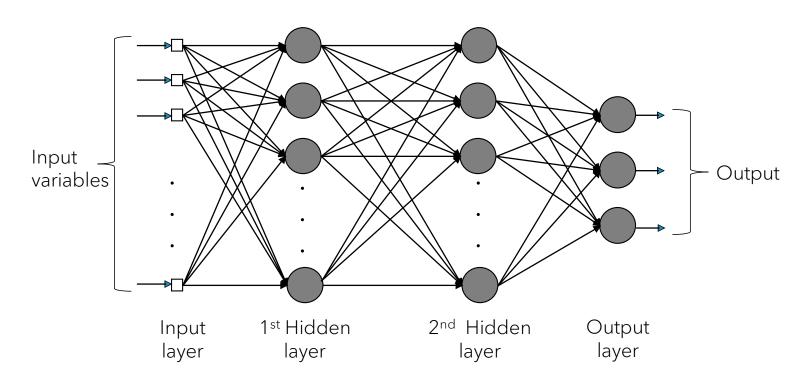
slower, pulled, declines, downward, tariffication, decline, downtrend, slowed, reduction, eased, decrease, softening, ... depreciation, shortage, triggered, potential, conflict, implement, premium, rising, faster, additional, upward, continuing, ...



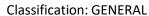
## Sentence Sentiment Labelling

## 2 Machine Learning-based approach




- Data Pre-processing
  - Removal of html tags and punctuations, lowercase, remove stopwords, lemmatization
- Word2Vec Embeddings
  - Vectorize the sentences by converting the words into numerical representations.
- Models explored: Artificial Neural Network (ANN),
  Bidirectional Long Short-Term Memory (Bi-LSTM)

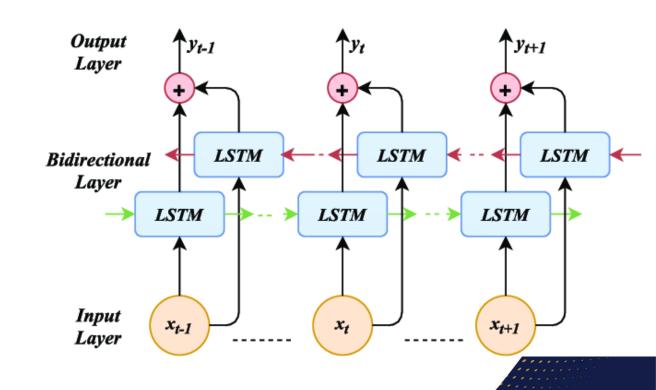



# Multilayer Perceptron (MLP)

#### **Artificial Neural Network (ANN)**

A three-layer perceptron




Source: Authors' own presentation





### **Bidirectional LSTM model**

- Contains two LSTMs:
  - forward and backward direction
  - To learn relationship of preceding and following words



### **Evaluation of Methods**

Lexicons and ML models were evaluated against the manually annotated dataset with around 3,000 sampled sentences from online news articles.

| Dictionary*     | Accuracy | Macro F1 |
|-----------------|----------|----------|
| Initial Lexicon | 64.3     | 41.8     |
| RL Lexicon      | 89.3     | 69.3     |

| ML                   | Accuracy | Macro F1 |
|----------------------|----------|----------|
| MLP (20,8,3)         | 68.9     | 45.7     |
| BiLSTM (16)          | 73.5     | 54.8     |
| BiLSTM (32)          | 78.5     | 57.1     |
| BiLSTM (16)<br>SMOTE | 78.4     | 56.2     |
| BiLSTM(32)<br>SMOTE  | 79.8     | 57.9     |

Source: Authors' calculations

NOTES: The MLP has input size of 20 (corresponding to Word2Vec embedding size), 8 hidden units in the first layer, and 3 neurons in the last layer (corresponding to the 3 classes: increase/decrease/no change).

A BiLSTM (x) notation is interpreted as a BiLSTM with x number of hidden units per LSTM. For example, BiLSTM(16) has 2 LSTM modules with 16 hidden units each.

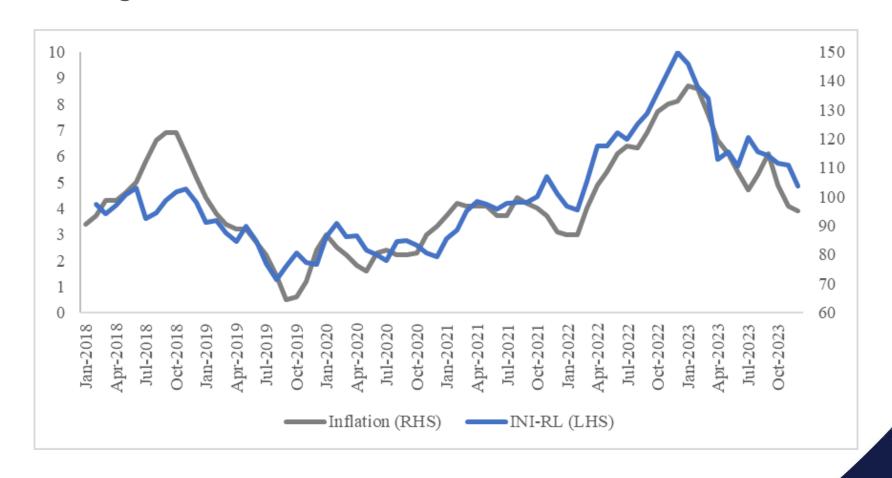
# Methodology: Index construction

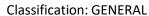
Index Construction Methods:

| Method | Equation                                                                                           |
|--------|----------------------------------------------------------------------------------------------------|
| 1      | $INI = \frac{\#(articles \ net \ increase)}{\#(relevant \ articles)}$                              |
| 2      | $Score = \frac{\#(articles\ net\ increase) - \#(articles\ net\ decrease)}{\#(relevant\ articles)}$ |

Classification: GENERAL

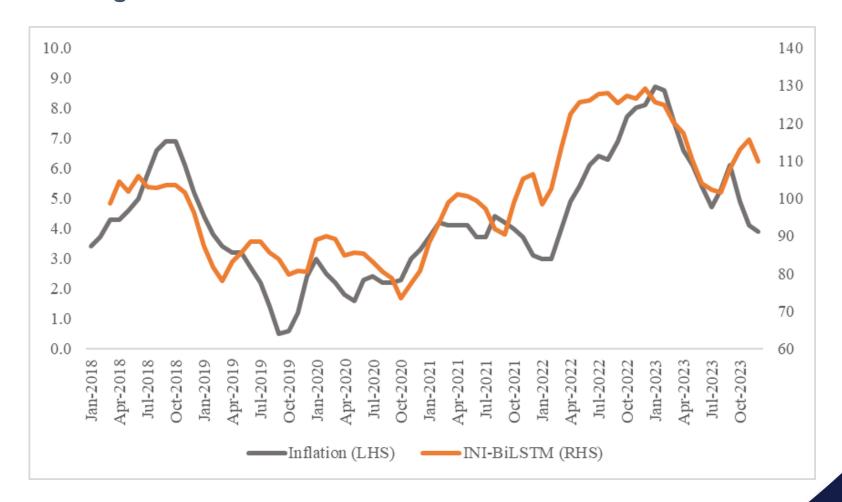
## **Evaluation of Results**


Comparison of model accuracy and correlation with CPI


| Model                  | Indexing<br>Method | Test<br>Accuracy<br>(in percent) | Macro-F1<br>score | Correlation<br>with CPI 2018 | Correlation<br>with CPI<br>2018 lag 1 |
|------------------------|--------------------|----------------------------------|-------------------|------------------------------|---------------------------------------|
| BiLSTM (16)            | 1                  | 73.5                             | 54.8              | 0.731                        | 0.756                                 |
| BiLSTM(32)             | 1                  | 78.5                             | 57.1              | 0.839                        | 0.849                                 |
| BiLSTM (16) with SMOTE | 1                  | 78.4                             | 56.2              | 0.813                        | 0.827                                 |
| BiLSTM (32) with SMOTE | 1                  | 79.8                             | 57.9              | 0.820                        | 0.838                                 |
| RL lexicon             | 2                  | 89.3                             | 69.3              | 0.822                        | 0.844                                 |

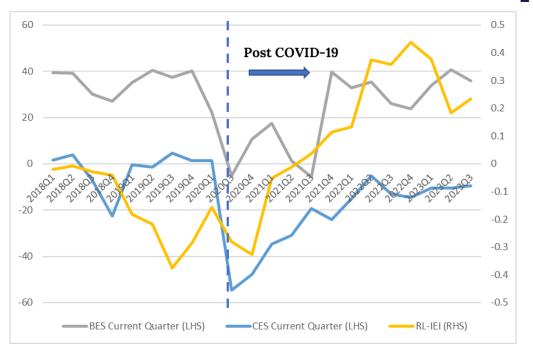
Classification: GENERAL

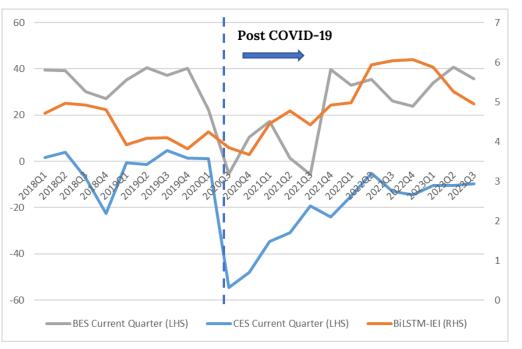
# **Preliminary Results**


INI using the RL lexicon vs. CPI base 2018






# **Preliminary Results**


#### INI using Bidirectional LSTM vs. CPI base 2018





## INIs vs Inflation Expectations

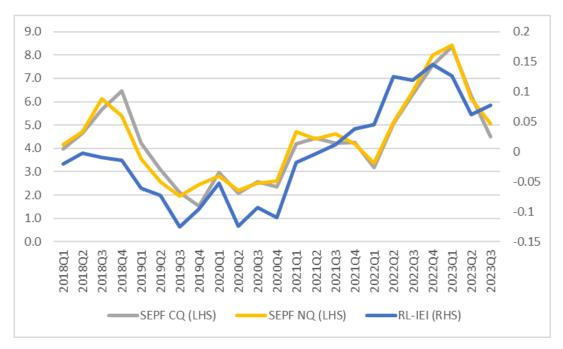




#### Correlation between INIs and Business/Consumer Expectations

|            | BES-CQ* | BES-NQ* | CES-CQ** | CES-<br>NQ** |
|------------|---------|---------|----------|--------------|
| INI-RL     | 0.82    | 0.83    | 0.57     | 0.51         |
| INI-BiLSTM | 0.70    | 0.71    | 0.30     | 0.23         |

<sup>\*</sup>Period coverage: 2018 Q1 – 2023 Q3


Note: Q2 2020 is not included in the sample as there were no survey results during this quarter.

Source: Authors' estimates

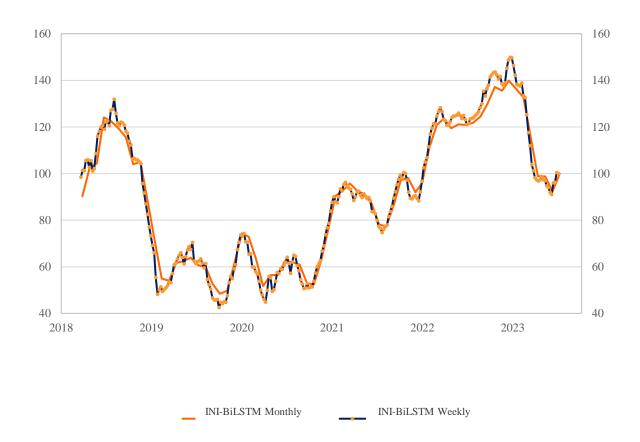


<sup>\*\*</sup> *Period coverage:* 2020Q1 – 2023 Q3

### INIs vs Professional Forecasters' Expectations






#### Correlation between INIs and BSEF

|            | SEPF-CQ                   | SEPF-NQ |  |
|------------|---------------------------|---------|--|
|            | Overall (2018Q1 - 2023Q3) |         |  |
| RLlexicon  | 0.82                      | 0.86    |  |
| BiLSTM(32) | 0.84                      | 0.87    |  |



## **Policy Relevance and Recommendation**

#### Weekly and Monthly tracker from IEI



## Example of a Wordcloud based on labelled news articles





# **Highlights of the Study**

### We construct an inflation news index (INI) using text analysis on news articles

 The INI was generated using two methods: (1) Dictionary-based method with Reinforcement Learning and (2) Machine learning-based method using Bidirectional Long Short-term Memory (Bi-LSTM)

### The INI shows strong correlation with actual inflation and inflation expectations

 The resulting indices all show strong correlation with the actual inflation and inflation expectations (BSEF) for the month with the potential to be used as 1-month ahead leading indicators of inflation

### The INI has the potential to be used for inflation forecasting

• The potential of the INI as a leading indicator to inflation can be used for forecasting and nowcasting exercises.



Hot off the press: An inflation news index for the Philippines using reinforced lexicons and memory-based deep learning

Cherrie R. Mapa, Ma. Ellysah Joy T. Guliman, Alan Chester T. Arcin, Jacqueline Margaux G. Herbo, Sanjeev A. Parmanand and Genna Paola S. Centeno

Bangko Sentral ng Pilipinas

**CBSL International Research Conference** 

13 December 2024

\*The views expressed in this paper are those of the authors and do not necessarily reflect those of the BSP. Any errors and omissions are the sole responsibility of the authors.

