FUNDAMENTAL DRIVERS OF INTERNATIONAL PRICE AND CONSUMPTION DISPARITIES

LONG VO

Economics Department

UWA Business School

12th International Research Conference
The Central Bank of Sri Lanka
December, 2019

OBJECTIVE

- Is it possible to summarise the information contained in a large amount of economic variables?
- Yes
- Data dimension reduction technique, principal component analysis
- Consumption patterns in large number of countries is explained is predominantly by one determinant, closely related to income
- Income plays a minor role in global pricing behaviour.

MOTIVATION

Increasing availability of high frequency, large datasets

Is this information useful in measuring economic activity?

OBSERVABLE ECONOMIC ACTIVITIES

Economic activity indicators

Growth rate (%)

10 more variables! The more the merrier?

Year

FROM TIME TO SPACE: CROSS-SECTIONAL DATA

Difference (%)

Approach 2: Principal component analysis (PCA): Linear combinations of all variables. Deals with both the <u>weighting issue</u> and the <u>interaction among</u>

Country

OUR DATA: ICP, 2011 ROUND

Values of...

182 Countries				
1. Algeria				
2. Angola				
3. Benin				
4. Botswana				
5. Burkina Faso				
•••				
178. Sudan (WAS)				
179. United Arab Emirates				
180. Yemen				
181. Georgia				
182. Iran, Islamic Rep.				

1	1. F 2 2. 3.	Breat GDP	55. Imports	55. Imports
N	M_1	14481.0	M _{1,155}	M _{1,155}
N	M_2	9767.6	M _{2,155}	M _{2,155}
M N	M ₁₈	24.3	M _{182,155}	M _{182,155}

Alternative?

 $182 \times 155 = 28,210$ elements

FOOD CONSUMPTION IN OECD COUNTRIES

<u>Sample</u>

International Comparison Program, 2011 round

14 Food Items, 46 OECD countries

Two variables:

Consumption

Relative prices

CONSUMPTION CORRELATION MATRIX

A PRIMER ON PCA

$$(PC_j) = (X)a_i (i = 1, ..., 14)$$
Data matrix

First PC (i = 1):

```
\begin{array}{lll} pc_{1,1} & = x_{1,1}a_{1,1} + x_{2,1}a_{2,1} + \cdots + x_{1,14}a_{14,1} \\ \\ pc_{2,1} & = x_{2,1}a_{1,1} + x_{2,2}a_{2,1} + \cdots + x_{2,14}a_{14,1} \\ \\ \vdots & \vdots & \vdots & \vdots \\ \\ pc_{46,1} & = x_{46,1}a_{1,1} + x_{46,2}a_{2,1} + \cdots + x_{46,14}a_{14,1} \end{array}
```

SCREE PLOT

PC₁ AND PC₂, OECD COUNTRIES

PC₁ AND PC₂, 22 ASIAN COUNTRIES

NATIONAL CUISINES?

	Sri Lanka					
Most consumed items						
	Rice					
	Seafoods					
	Vegetables					
Least consumed items						
Pork and Lamb						
	Beer					
	Other meats					

TAKEAWAYS

Evidence that SKL food consumption pattern is:

1- Different from the rest of the SA countries

2- More similar to countries in the same income quartile such as Malaysia or Thailand

PC1 picks up the effect of rising income in SKL

OTHER GEOGRAPHICAL CLUSTERS

CONSUMPTION PC1 VS. INCOME

PC1

$$PC1 = 6.28 \text{ Income} + C$$

 $\mathbf{R}^2 = 0.96$

Income

PRICE PC1 VS. INCOME

CONCLUSIONS: PCA APPLICATION

• PCA is a powerful <u>dimensional reduction</u> technique, particularly when the data correlation structure is complex and/or distribution of variables differ across items.

• In combination with high-quality data from the ICP, PCA allows us to obtain a *clear economic implication* for the common factor determining international consumption

CONCLUSIONS: ICP APPLICATION

	Prices	Consumption	Remark
Total data variation explained by PC1	86%	42%	It is easier to summarise price co - movement with a common factor
PC1 variation explained by Income	24%	98%	The common factor of consumption is predominantly determined by affluence

Consumption being <u>driven mostly by local factors</u> (income, in particular), while there is a tendency for prices to be globally determined (via trade, for example).

MY TIME MUST BE UP.

THANK YOU!

QUESTIONS & COMMENTS?