Optimal Credit Allocations

10 th International Research Conference 2017
Central Bank of Sri Lanka

Janaka D. Maheepala
Senior Economist
Central Bank of Sri Lanka

8 December 2017

How commercial banks should allocate their deposits among three different agents: households, firms, and the government to achieve socially optimal allocation?

- Optimal allocation depends on the discount factor and risk factor
- 60% of total loan to impatient households and firms, rest government

My Contribution

Identify socially optimal loan allocations to agents in the economy by the commercial banks

Outline

- Model
- Results
- Conclusion

Model

Figure 1: Graphical view of the overall model

Patient Households

- Households maximize their expected discounted lifetime utility given by:

$$
E_{0} \sum_{t=0}^{\infty}\left(\beta_{p}\right)^{t}\left[\ln C_{p, t}-\theta_{p} \frac{N_{p, t}^{1+\chi}}{1+\chi}\right]
$$

$$
\begin{gathered}
\text { s.t. } C_{p, t}+D_{t+1}+I_{t}=W_{t} N_{p, t}+R_{t} K_{t}+\left(1+r_{p, t-1}\right) D_{t}+\Pi_{t}-T_{p, t} \\
\text { and } K_{t+1}=I_{t}+(1-\delta) K_{t}
\end{gathered}
$$

First order conditions give the following equilibrium conditions:

$$
\begin{gather*}
\theta_{p} N_{p, t}^{\chi}=\frac{W_{t}}{C_{p, t}} \tag{1}\\
\frac{1}{C_{p, t}}=\beta_{p} E_{t}\left[\frac{1}{C_{p, t+1}}\left(R_{t+1}+1-\delta\right)\right] \tag{2}\\
\frac{1}{C_{p, t}}=\beta_{p} E_{t}\left[\frac{1}{C_{p, t+1}}\left(1+r_{p, t}\right)\right] \tag{3}
\end{gather*}
$$

Impatient Households

- Households maximize their expected discounted lifetime utility given by:

$$
\begin{aligned}
& E_{0} \sum_{t=0}^{\infty}\left(\beta_{I}\right)^{t}\left[\ln C_{i, t}-\theta_{I} \frac{N_{i, t}^{1+\chi}}{1+\chi}\right] \\
& \text { s.t. } C_{i, t}+\left(1+r_{i, t-1}\right) L_{i, t}=W_{t} N_{i, t}+L_{i, t+1}-T_{i, t}
\end{aligned}
$$

First order conditions give the following equilibrium conditions:

$$
\begin{gather*}
\theta_{I} N_{i, t}^{\chi}=\frac{W_{t}}{C_{i, t}} \tag{4}\\
\frac{1}{C_{i, t}}=\beta_{I} E_{t}\left[\frac{1}{C_{i, t+1}}\left(1+r_{i, t}\right)\right] \tag{5}
\end{gather*}
$$

Firms

- Firms' problem can be expressed by the following maximization problem:

$$
E_{0} \sum_{t=0}^{\infty} M_{t}\left(A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}-W_{t} N_{t}-R_{t} K_{t}+L_{f, t+1}-\left(1+r_{f, t-1}\right) L_{f, t}\right)
$$

Define the stochastic discount factor as:

$$
M_{t}=\beta_{f}^{t} \frac{U^{I^{\prime}}\left(C_{i, t}\right)}{U^{I^{\prime}}\left(C_{i, 0}\right)}
$$

First order conditions give the factor prices equal to their marginal products:

$$
\begin{gather*}
(1-\alpha) N_{t}^{-\alpha} A_{t} K_{t}^{\alpha}=W_{t} \tag{6}\\
\alpha N_{t}^{1-\alpha} A_{t} K_{t}^{\alpha-1}=R_{t} \tag{7}\\
\frac{1}{C_{i, t}}=\beta_{f} E_{t}\left[\frac{1}{C_{i, t+1}}\left(1+r_{f, t}\right)\right] \tag{8}
\end{gather*}
$$

Government

- Government's budget constraint can be written as:

$$
\begin{equation*}
G_{t}+r_{g, t-1} L_{g, t}=T_{t}+L_{g, t+1}-L_{g, t} \tag{9}
\end{equation*}
$$

- Banks maximize the expected discounted profit $E_{0} \sum_{t=0}^{\infty} B_{t} \pi_{t}$.
- Hence, bank's problem can be written as:

$$
\begin{aligned}
E_{0} \sum_{t=0}^{\infty} & B_{t}\left(D_{t+1}+\left(1+r_{f, t-1}\right) L_{f, t}+\left(1+r_{g, t-1}\right) L_{g, t}\right. \\
& +\left(1+r_{i, t-1}\right) L_{i, t}-L_{f, t+1}-L_{g, t+1}-L_{i, t+1} \\
& \left.-\left(1+r_{p, t-1}\right) D_{t}-\frac{\phi_{f}}{2} L_{f, t+1}^{2}-\frac{\phi_{g}}{2} L_{g, t+1}^{2}-\frac{\phi_{i}}{2} L_{i, t+1}^{2}\right) \\
& \quad \text { s.t. } D_{t+1}=L_{f, t+1}+L_{g, t+1}+L_{i, t+1}
\end{aligned}
$$

Define the stochastic discount factor as: $B_{t}=\beta_{B}^{t} \frac{U^{P^{\prime}}\left(C_{p, t}\right)}{U^{P^{\prime}}\left(C_{p, 0}\right)}$

First order conditions give the following equilibrium:

$$
\begin{align*}
\phi_{f} \frac{1}{C_{p, t}} L_{f, t+1} & =\beta_{B} \frac{1}{C_{p, t+1}}\left(r_{f, t}-r_{p, t}\right) \tag{10}\\
\phi_{g} \frac{1}{C_{p, t}} L_{g, t+1} & =\beta_{B} \frac{1}{C_{p, t+1}}\left(r_{g, t}-r_{p, t}\right) \tag{11}\\
\phi_{i} \frac{1}{C_{p, t}} L_{i, t+1} & =\beta_{B} \frac{1}{C_{p, t+1}}\left(r_{i, t}-r_{p, t}\right) \tag{12}
\end{align*}
$$

Exogenous Processes

(1) Productivity

$$
\begin{equation*}
\ln A_{t}=\left(1-\rho_{a}\right) \ln A+\rho_{a} \ln A_{t-1}+\varepsilon_{a, t} \tag{13}
\end{equation*}
$$

where $A=1,0<\rho_{a}<1$ is the $\operatorname{AR}(1)$ persistence parameter and $\varepsilon_{a, t} \sim N\left(0, \sigma_{a}^{2}\right)$.
(2) Government expenditure

$$
\begin{equation*}
\ln g_{t}=\left(1-\rho_{g}\right) \ln g+\rho_{g} \ln g_{t-1}+\varepsilon_{g, t} \tag{14}
\end{equation*}
$$

where $g=1,0<\rho_{g}<1$, is the $\operatorname{AR}(1)$ persistence parameter and $\varepsilon_{g, t} \sim N\left(0, \sigma_{g}^{2}\right)$.

The Ramsey Problem

- Ramsey planer's maximization problem can be written as:

$$
W=\omega \sum_{t=0}^{\infty} \beta_{p}^{t} U^{p}\left(C_{p, t}, N_{p, t}\right)+(1-\omega) \sum_{t=0}^{\infty} \beta_{I}^{t} U^{I}\left(C_{i, t}, N_{i, t}\right)
$$

subject to the equilibrium conditions (1) - (12) and resource constraint for a given stochastic process $\left\{A_{t}, G_{t}\right\}_{t=0}^{\infty}$.

Calibration

Table 1: Calibrated parameters for the model

Parameters	Value	Description
β_{p}	0.99	Subjective discount factor for the patient household
β_{I}	0.96	Subjective discount factor for the impatient household
β_{f}	0.96	Subjective discount factor for firms
β_{B}	0.99	Subjective discount factor for banks
α	0.30	Capital share of production
χ	0.35	Elasticity of labor supply with respect to wage
θ_{p}	5.25	Disutility of labor by patient household
θ_{I}	5.25	Disutility of labor by impatient household
ϕ_{I}	0.015	Risk factor of impatient household on loan
ϕ_{g}	0.003	Risk factor of government on loan
ϕ_{f}	0.015	Risk factor of firm on loan
ω	0.5	Ramsey preference weight
δ	0.025	Depreciation of capital
ρ_{a}	0.92	Serial correlation of technology shocks
ρ_{g}	0.92	Serial correlation of government expenditure shocks
$y_{s s}$	1.5	Stady state of output
σ_{z}	0.0026	Standard deviation of the innovation to ln(z)
σ_{u}	0.0018	Standard deviation of the innovation to government ex-
		penditure

RESULTS: Comparison of Private Sector and Ramsey Planner Solution

Table 2: Mean and standard deviation of variables: Ramsey vs private market

Variable	Ramsey Solution		Private Sector Solution	
	Mean	Std.Dev	Mean	Std.Dev
C_{p}	0.5090	0.0034	0.5059	0.0003
N_{p}	0.3011	0.0045	0.3064	0.0029
C_{i}	0.4672	0.0055	0.4696	0.0034
N_{i}	0.3847	0.0052	0.3529	0.0038
R	0.0351	0.0003	0.0351	0.0001
I	0.3675	0.0093	0.3673	0.0029
y	1.7200	0.0148	1.7191	0.0043
w	1.7557	0.0145	1.7557	0.0066
r_{p}	0.0101	0.0002	0.0101	0.0001
r_{i}	0.0417	0.0006	0.0417	0.0005
r_{f}	0.0417	0.0006	0.0417	0.0005
r_{g}	0.0184	0.0002	0.0184	0.0001
L_{f}	2.0833	0.0268	2.0833	0.0346
L_{g}	2.7240	0.0061	2.7240	0.0007
L_{i}	2.0833	0.0268	2.0833	0.0346
t	0.3500	0.0000	0.3500	0.0000
k	14.7001	0.0940	14.6927	0.0098
G	0.3000	0.0000	0.3000	0.0000
A	1.0000	0.0066	1.0000	0.0034
c	0.9762	0.0080	0.9755	0.0036
N	0.6858	0.0031	0.6854	0.0009
D	6.8906	0.0506	6.8907	0.0692
$\frac{L_{i}}{L}$	0.3023	0.0017	0.3023	0.0020
$\frac{L_{f}}{L}$	0.3023	0.0017	0.3023	0.0020
$\frac{L_{g}}{L}$	0.3953	0.0034	0.3953	0.0040
t_{p}	0.2377	0.0146	0.2500	0.0000
t_{i}	0.1123	0.0146	0.1000	0.0000

RESULTS: Comparison of Private Sector and Ramsey Planner Solution

Table 3: Comparisons of loan ratios of each agent: Ramsey vs market

	Ramsey Solution			Private Sector Solution		
	Mean	Std.Dev		Mean	Std.Dev	
Loan to Impatient HH/Total Loan	30.23%	0.0017		30.23%	0.002	
Loan to Firm/Total Loan	30.23%		0.0017		30.23%	0.002
Loan to Government/Total Loan	39.53%	0.0034		39.53%	0.004	

Table 4: Comparison of loan ratio to toal loan according to different risk of Ramsey optimal policy problem

Equal risk among all agents	0.015	0.026	0.1	1	2
Loan to Impatient HH/Total Loan	36.68%	33.34%	24.41%	11.16%	8.40%
Loan to Firm/Total Loan	36.68%	33.34%	24.41%	11.16%	8.40%
Loan to Government/Total Loan	26.65%	33.31%	51.18%	77.68%	83.21%

RESULTS: Effect of Discount Factor on Risk

Table 5: Comparison of loan ratio to total loan according to discount factor in high risk region ($\phi_{i}=2, \phi_{g}=0.4, \phi_{f}=2$) of Ramsey optimal policy problem

Impatient HH Discount Factor	Loan Impatient HH/Total Loan	Loan Firm/Total Loan	Loan Gov/Total Loan
0.9	16.55%	5.17%	
0.93	11.34%	5.49%	78.28%
0.95	7.70%	5.72%	83.17%
0.97	3.93%	5.95%	86.58%
0.989	1.00%	6.13%	90.12%

Table 6: Comparison of loan ratio to total loan according to discount factor in low risk region ($\phi_{i}=0.015, \phi_{g}=0.003, \phi_{f}=0.015$) of Ramsey optimal policy problem

Impatient HH Discount Factor	Loan Impatient HH/Total Loan	Loan Firm/Total Loan	Loan Gov/Total Loan
0.9	58.10%	18.16%	23.74%
0.93	47.22%	22.87%	29.91%
0.95	36.86%	27.36%	35.77%
0.97	22.24%	33.70%	44.06%
0.989	6.58%	40.49%	52.94%

RESULTS: Effect of Risk on Loan Allocation

Figure 1: Loan allocation to impatient HH at different risk (left: $\phi_{i}=0.003-1.00, \phi_{g}=0.003, \phi_{f}=0.015$) and

Loan allocation to government at different risk
(right: $\phi_{i}=0.015, \phi_{g}=0.015-0.000015, \phi_{f}=0.015$)

RESULTS: Impulse Response Function of Loans to Shocks

Figure 2: The impulse response functions to technology shocks and government expenditure shocks under Ramsey equilibrium and private market equilibrium

RESULTS: Impulse Response Function of Loans to Shocks for Different Weight

Figure 3: The impulse response functions to technology shocks for different weights

RESULTS: Impulse Response Function to Tech-Shock

Figure 4: Impulse response to Tech-shock: Ramsey vs private market

RESULTS: Impulse Response Function to Gov-Shock

Figure 5: Impulse response to government expenditure shock: Ramsey vs private market

- Optimal credit allocation is mainly dependent on two factors
- Discount factor
- Risk factor
- Discount factor does not exert an important influence on optimal loan allocation when risk is high but, highly influential in the presence of low risk
- When the risk of households increases, optimal loan to households converges to zero.
- When the risk of the government decreases, the optimal loan to government reaches its upper bound of 55% of total loans
- 60% of the total loan should be allocated equally between households and firms and the rest should be allocated to the government

Thank you!

