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Abstract

I develop a two-step subset selection procedure to extract the best-performing predictors from a

large dataset and combine them to identify a set of best-performing models. I apply the method-

ology to build an index to forecast the probability of having the euro area year-on-year inflation

below the 2% level in a medium-term horizon—i.e., the Deflationary Pressure Index (DPI). I

compare the index with the probabilities reported in the European Central Bank Survey of Pro-

fessional Forecasters (ECB SPF) and show that, although the indices are comoving, the DPI is

more operationally convenient and timely in catching the inflation turning points.

JEL classification: C25, C63, E3, E58

Keywords: inflation, prediction, index, euro area, ECB, ROC

∗I would like to thank Roberto Motto, Carlo Altavilla, Giacomo Carboni, Alex Tagliabracci and Roberto Di Mari
for their valuable suggestions on an earlier version of the paper. I am grateful to Antonello D’Agostino, Giuseppe
Ragusa, Giovanni Ricco, Giulio Nicoletti, Marco del Negro, Domenico Giannone, Refet Gürkaynak, and Gregor von
Schweinitz for their precious advice. Also, I would like to thank the participants of the annual meeting of the Society
for Computational Economics (CEF 2018) and the International Association for Applied Econometrics (IAAE 2018),
the I Vienna Workshop on Forecasting, and colleagues at the Central Bank of Malta’s Research Department and Bilkent
Economic Department for useful comments. All errors are mine.
The views expressed in this paper are those of the author and do not necessarily reflect those of the Central Bank of
Malta or the Eurosystem.
Corresponding author: Luca Brugnolini brugnolinil@centralbankmalta.org, senior research economist at the Central
Bank of Malta’s Research Department.

mailto:brugnolinil@centralbankmalta.org


1 Introduction

Stabilizing prices is an arduous task. On the one hand, central banks cannot rely only on contem-

poraneous inflation measures, as monetary policy actions exerted today transmits to prices solely in

future periods (Friedman, 1961, 1972). On the other, the correct implementation of monetary policy

actions is related to a general medium-term orientation (see, e.g., Bernanke et al., 2018). Therefore,

the interval for achieving price stability has to be extremely general. With that in mind, I propose a

tool constructed by averaging the estimates of a set of forecasting models tailored for a grid of short

to medium term horizons—i.e., the Deflationary Pressure Index (DPI). The main idea connected

to this choice is that macroeconomic as well as financial variables have different predictive power

at distinct horizons, and a single model unlikely produces the best forecast at different steps-ahead

(Estrella and Hardouvelis, 1991; Estrella and Mishkin, 1998). In this respective, I create an index to

predict the likelihood of having inflation below the 2% level in the next two years by averaging the

forecasted probabilities from the best horizon-calibrated models.

The reason for forecasting probabilities is related to the prominent role achieved by density fore-

cast in the last decades (J.P. Morgan, 1996; Diebold et al., 1997). In general, supporting point fore-

casts with probabilities provides a quantitative assessment of the forecaster uncertainty and helps

policymakers in the decision process—a prominent example is the Bank of England fan chart (Brit-

ton et al., 1998). However, probabilities are intrinsically informative and can be a primary source

of knowledge. For example, in the United States, since 1968 the Survey of Professional Forecasters

(SPF) asks respondents to provide density forecasts of inflation and output (Zarnowitz and Lambros,

1987). In Europe, the history is much shorter. However, the European Central Bank (ECB) has

directly collected density forecasts since 1999. Although surveys are often accurate in predicting in-

flation (Faust and Wright, 2013), there are at least two reasons for developing a novel tool to forecast

probabilities. First, surveys are deterministically released and cannot be timely updated. Secondly,

median survey movements are not easily interpretable, as the model specification of the forecasters

is unknown. On the contrary, the index I propose, by having a known specification and being directly

updatable, overcomes both disadvantages.

The construction of an index to interpret and forecast business cycle conditions is a tale of a long

tradition in economics. The seminal paper by Mitchell and Burns (1938) has spawned voluminous

literature on coincident and leading indicators, and many influential articles have followed (Stock and

Watson, 1989, 2002a). In this work, I partially build on this discussion. However, I also builds on

the machine learning literature of best subset selection (see, e.g., Liu and Motoda, 2007). Moreover,

some specific choices are related to the particular application of inflation forecasting in the medium
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term. Hence, to find the best-performing model at each predicted horizon, I develop a two-step

procedure to select and combine an optimal subset of variables extracted from a large dataset. In a

first step, I discard the variables producing a poor out-of-sample density forecast using a binomial

probability model. Then, in a second step, I combine the best-performing variables in a multivariate

framework to select the best performing models.

The highlighted procedure is significantly different from the problem of extracting unobserved

factors from a large pool of variables. In particular, not involving any data transformation, the

method allows for a more substantial degree of interpretability. Secondly, while the inclusion of

non-linearities in the model specification does not increase the complexity for best subset selection,

this feature has a different effect on factor analysis. The reason is linked to the fact that in a hypo-

thetical state-space model the measurement equation would be nonlinear, implying that the standard

Kalman filter cannot be used to derive the likelihood. Finally, the choice of a discrete probability

model makes the DPI very different from standard leading indicators, as the outcome is a density

and not a point forecast.

In this sense, the constructed index resemble more closely the indicators developed in the liter-

ature of the early-warnings (Kaminsky et al., 1998; Kaminsky and Reinhart, 1999; Reinhart, 2002),

with the main difference that it is developed to forecast the probability of having inflation around a

central bank target. This feature also implies that a multi-horizon prediction has to be designed to

deal with the general medium-term orientation. Finally, with respect to continuous models capable

of producing density forecasts and dealing with large datasets, as Bayesian shrinkage (De Mol et al.,

2008; Bańbura et al., 2010; Giannone et al., 2014, 2015), the use of discrete models allows to exploit

specific loss functions for variable selection based on the model ability to generate true and false

signals independently of the selected threshold. The most prominent example is the Area Under the

Receiver Operating Characteristics (AUROC), which I describe and exploit in the next sections.

The methodology I propose is new in this field, and because there are few studies on forecasting

inflation probabilities, there is no established benchmark for comparisons. An article with a similar

outcome is the one presenting the St. Louis Federal Reserve Price Pressure Measure (Jackson et al.,

2015). This series measures the probability that the expected personal consumption expenditures

price index (PCEP) inflation rate over the next 12 months will exceed the 2.5% level. However, in

the paper, the authors calibrate a factor model only on point forecast, then they include the extracted

factors in a discrete model to predict the probabilities. In this sense, the probability model is not

directly calibrated. Also, the same model is used to predict each horizon, without considering that

longer and shorter horizons would benefit from different specifications. On the contrary, the present

paper gives prominent importance to each model and prediction used to construct the index.
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In particular, I apply the procedure to the euro area case and develop a tool to forecast the proba-

bility that the Harmonized Index of Consumer Prices (HICP) inflation exceeds the ECB target in the

medium-term. Finally, to assess the predictive ability of the index, I compare it to an ad hoc measure

constructed from the ECB SPF probabilities. I show that the two indices comove, even if the SPF

often fails in capturing the turning points between the two states—i.e., inflation above and below the

target. Also, I show that both indices predict that the medium-term probability of having inflation

higher than 2% before March 2019 is extremely low.

The rest of the paper is organized as follows. Section 2 describes the two-step model selection

procedure. Section 3 apply the methodology to the euro area case, builds the Deflationary Pres-

sure Index and compares it with a probability measure built from the ECB SPF. Finally, section 4

concludes.

2 Methodology

The literature has developed many approaches to deal with large datasets. In general, these tech-

niques either exploit dimensionality reduction, as factor models (Forni et al., 2000; Stock and Wat-

son, 2002b,a), or employ parameter selection/shrinkage, by including an L1, L2-penalty function,

or a combination of the two into the maximization problem—prominent examples are the lasso es-

timator, Tikhonov regularization and elastic net. A similar goal can also be achieved by Bayesian

spike-and-slab prior (Mitchell and Beauchamp, 1988; Madigan and Raftery, 1994; George and Mc-

Culloch, 1997) or Bayesian Model Averaging (Hoeting et al., 1999). However, although extremely

appealing in various contexts, one of the main drawbacks of these approaches are related to the usual

trade-off between flexibility and interpretability. Especially in forecasting, being able of understand-

ing the specific variables causing a change in the predictions is essential to judge the reliability of

the forecast itself. In this sense, the best subset selection approach allows for the maximum degree

of interpretability among all the candidates. In particular, I develop a two-step selection procedure

focusing exclusively on the out-of-sample performance of each of the model; in a first step, I directly

discard the variables producing a poor out-of-sample density forecast using a binomial probability

model. Then, in a second step, I combine the best-performing variables in a multivariate framework

to select the best-performing models. Therefore each model is tailored to predict a specific horizon.

Assessing the predictive power of different variables at different horizons is one of the appealing

features of out-of-sample metrics. In fact, it is well-known among forecasters that different variables

have different predictive power along different horizons. For example, the yield curve slope—i.e.,

the difference between short to long-term yields—is a variable which presents these characteristics.

The yield curve slope is renewed in the literature for being a powerful predictor of recessions (Es-
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trella and Hardouvelis, 1991; Estrella and Mishkin, 1998). However, its predictive ability is evident

only for the medium to long-term forecasts.

Along with this line, I test different variables to select a pool of predictors with a proved fore-

casting power along different horizons. Finally, the predictions obtained from the best models are

averaged along a time-dimension to create the index. In what follows, I describe the two main steps

of the model selection procedure.

2.1 First step

Equation (1) presents the model specification. In a first step, I project the discrete variable Yt+h on

the space spanned by each variable xit in the full dataset using a univariate probability model.

P (Yt+h = 1|xit) = G(xit; θ
i), h = 1, . . . , H, i = 1, . . . , K (1)

In the notation, G (·) : Rn → (0, 1), θi is a vector of unknown parameters, h is the forecast horizon

and K is the number of predictors in the dataset. For example, when G is a Gaussian cumulative

distribution function (cdf), equation (1) is a probit model. The models are initially estimated on

a pre-sample up to time Tp. From Tp + 1 to T each model is recursively estimated by adding a

data point at each iteration and computing the direct forecast for each horizon h. At the end of the

procedure, the predictive ability of each model is assessed against a pool of S loss functions Ls(·),

s = 1, . . . , S—in what follows simply Ls. For example, in the application, I select the standard

L1 and L2 losses, besides the Area Under the Receiver Operating Characteristics. The last criterion

is tailored to signal extraction and ranks the predictive ability of a model according to its ability to

report true and false signals irrespectively of the selected threshold. Appendix A provides a detailed

review of the AUROC. Out of the first step, K1 < K variables are selected by picking the best M

predictors according to all criteria Ls and horizons h. Secondly, the M best predictors are pooled

together without repetition—e.g., in case a variable is the best predictor for two different horizons,

it is included in the pool only once. These variables are then combined in a second step to find

the best performing models at each horizon. The hyperparameter M can be chosen according to

computational reasons. In particular, there is a direct mapping between M → K1 which depends on

the particular dataset X , the loss functions Ls, and the horizons h. Therefore, M can be selected to

obtainK1 predictors in the second step. The reason is related to the fact that there are 2K1−1 possible

models in the second step, and, unless using parallel computing, a researcher is often bound in a range

of fifteen to twenty predictors. However, in recent times, a particular form of parallel computing, as

grid computing, allows researchers to relax this constraint by simultaneously employing thousand of
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processors simultaneously1. The first step procedure is summarized in algorithm 1.

Algorithm 1: first step of the selection procedure.
for i = 1 to K do

Pre-estimating the model in (1) up to time Tp ;
for t = Tp + 1 to T do

Re-estimating the model and computing the direct forecast for each horizon h;
end for
Selecting and pooling the M best-performing models according to Ls;

end for

2.2 Second step

In the second step, I fit a separate multivariate discrete probability model to all combinations of the

K1 predictors selected in the first stage, as shown in equation (2).

P (Yt+h = 1|xct) = G(xct ; θ
c), h = 1, . . . , H, c = 1, . . . , Cj, j = 2, . . . , K1 (2)

Where c is a combination of j variables. As in the previous step, the models are pre-estimated on a

sample up to time Tp, and from Tp+1 to T each model is recursively estimated by adding a data point

at each iteration. Then, the direct forecasts for each horizon h are computed. At the end of the proce-

dure, the predictive ability of each model is assessed by the loss-functions Ls, and Bh,L best-models

are selected. As a twist, in this step, each model can be augmented with a counterpart specification

which includes a common factor Ft extracted from the full dataset. This procedure increases the

computational burden, by adding a costly operation at each iteration and increasing the number of

models to 2K1+1−2. However, in some application, adding a common factor might include informa-

tion useful for the forecast. A specific case is when the presence of few strong-correlated predictors

characterizes the full dataset. In the application, the common factor is estimated non-parametrically

via principal component. In particular, I estimate the factor from the eigenvector corresponding to the

largest eigenvalue of the variance-covariance matrix of the demeaned full dataset. However, differ-

ent procedures can easily be embedded in the algorithm. Naturally, including the models augmented

with a common factor does not force the algorithm to select them, as in the out-of-sample prediction

they might underperform their counterpart specifications without the factor. The procedure described

in the second step can be summarized in algorithm 2.

In many applications, having K1 different variables may imply that the number of possible com-

1An example is the Techila grid http://www.techilatechnologies.com/.
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Algorithm 2: second step of the selection procedure.
for j = 1 to K1 do

Compute the number of combinations Cj =
(
K1

j

)
with j variables;

for c = 1 to Cj do
Pre-estimating the model in (2) ;
if Factor then

Pre-estimating the model with factor P (Yt+h = 1|xct , Ft) = G(xct , Ft; θ
c, θf ) ;

end if
for t = Tp + 1 to T do

Re-estimating the model and computing the direct forecast for each horizon h;
if Factor then

Re-estimating the model and computing the direct forecast for each horizon
h;

end if
end for
Storing the model scores in terms of criterium Ls;

end for
end for
Selecting the Bh,L best-performing models for each horizon according to Ls;

binations is extremely high. Also, in some cases, a researcher would prefer to have a large number of

predictors to combine, but only allowing a certain number of regressors to enter into the model. This

choice may reflect a trade-off in terms of overfitting and model flexibility, but also considerations in

terms of computational burden. This problem can be easily handled by adding a second hyperparam-

eterK2 ≤ K1 into the algorithm to set the upper bound of the number of regressors in a single model.

K2 restricts the number of combinations from 2K1 − 1 to
∑K2

j=1

(
K1

j

)
= 2K1 −

∑K1

j=K2+1

(
K1

j

)
− 1.

Naturally, as K2 = K1 all the 2K1 − 1 combinations are included. From an operational point of

view, K2 is selected according to computational reasons. In particular, as all the models included in

K
(1)
2 << K

(2)
2 are also considered in K(2)

2 , a leading choice in setting this parameter should be re-

lated to reducing the computational burden. For example, selecting K1 = 20 predictors and allowing

for a maximum of K2 = 10 regressors in the models, approximately reduces the number of models

to estimate from one million to half.

2.3 Building the index

After selecting the best models according to the selected Ls loss functions, an index can be con-

structed by averaging over a time dimension the forecasts produced at each point in time by each

best models. In particular, at each point t, each best model can be used to generate a single forecast

for its tailored horizon h, and predictions averaged and recorded at time t. Following this approach,

each point of the index reports the probability of an event over the next H periods, as shown in
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equation (3).

ILt =
1

H

∑
h

ωhŶ
L,h
t+h , h = 1, . . . , H (3)

Where the superscript L highlights that, depending on the number of loss-functions applied for the

evaluation, a corresponding number of indices can be produced. This feature is related to the fact

that, at the end of the second step, each loss-function produces its own set of best models for the

horizons h = 1, . . . , H . Also, ωh represent a set of weights that can be used to enhance/reduce

the credibility towards certain models. Operationally, the weights can be selected using statistical

methods, or to reflect some researcher priors. For example, by weighting fewer predictions at longer

horizons. With the appropriate standardization, a second set of weights ωL can be also included in

equation (3), in order to average both across horizons and loss-functions. However, in the application

presented in the next sections, I avoid averaging the predictions across criteria to cross-benchmark the

extracted indices. Nevertheless, depending on the application, this feature can be easily embedded

in the algorithm.

3 Application

3.1 Model selection

In this section, I apply the methodology described in the previous one to a large dataset of national

and euro area indicators to forecast the probability of having the EA HICP year-on-year below the

2% level over the next two years. The variables contained in the dataset and their transformations

are reported in appendix B, while appendix C reviews the construction of a discrete dependent vari-

able for inflation. In the first step, for each variable i, I pre-estimate the model in equation (1) on

the period between 1999M1 to 2007M2. In the particular application, I assume G(·) as a Gaussian

CDF. Then, for each horizon h = [1, 3, 6, 9, 12, 15, 18, 24], I re-estimate the model recursively from

2007M3 to 2017M3 (121 months), increasing the sample size by one data-point at each iteration.

Finally, I evaluate each model Mi,h with three different loss-functions L. I select the AUROC as

a natural candidate for this type of analysis, but also the mean absolute error (MAE) and the root

mean squared Error (RMSE) as standard in the forecasting literature. Finally, I select and pool the

best M = 2 predictors to match exactly K1 = 20 variables in the second step. Table 1 shows the

best selected variables. Although the table shows an intricate pattern, it is possible to rationalize the

results along with some common lines. First, it is evident that the best predictors for very short hori-

zons are direct measures of inflation (Consumer Price Indexes, CPI, and HICP). Secondly, following

the MAE and RMSE, the best predictors for short-medium horizons are yields. In particular, the

euro area interest rate between 3 to 10-years to maturity. It is interesting to notice that also the ten
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Table 1: first step, all best predictors M , all horizons h, and loss-functions Lj .

Horiz. Criteria
AUROC MAE RMSE

first best second best first best second best first best second best
h = 1 FR CPI SA HICP FR IT CPI SA HICP IT IT CPI SA FR CPI SA
h = 3 FR CPI SA HICP FR IT CPI SA HICP IT FR CPI SA IT CPI SA
h = 6 IP DE EA7Y EA7Y EA3Y EA7Y EA3Y
h = 9 IP DE Price trends 12M EA7Y EA5Y EA7Y EA5Y
h = 12 IP FR Intermediate EA7Y EA10Y EA10Y EA7Y
h = 15 Intermediate Industrial conf. EA10Y DE10Y EA10Y US10Y
h = 18 M3 Capital US10Y EA10Y US10Y EA10Y
h = 24 DE CPI SA HICP DE HICP DE DE CPI SA M1 DE CPI SA

Note: the table shows the two best predictors for each horizon. These are selected among the entire dataset
using a univariate probit model for forecasting the probability of having inflation below the 2% level. The
predictions are evaluated according to three different criteria (AUROC, MAE, RMSE), and the name of the
selected variables is reported. The first column under each criterion highlights the best predictor, while the
second displays the second best. EA, FR, DE, IT and US are the country abbreviation for Eura Area, France,
Germany, Italy and United States. M1 and M3 are the monetary aggregates. IP stands for industrial produc-
tion. CPI and HICP are price indices. “Intermediate” and “Capital” are real activity measures of interme-
diate good production and capital. “Industrial conf.” is a survey measure of industrial confidence. Finally,
the country abbreviations reported beside the number of years as “DE10Y” stand for benchmark yields with
a particular maturity.

years German and US government bond yields have some predictive power. This fact is likely due

to the strong co-movements in the yields among markets, but might also be linked to the unconven-

tional monetary policy programs undertaken by both countries in the last years. In particular, asset

purchase programmes were tailored to target longer maturities. For example, the euro area Public

Security Purchase Programme (PSPP) has a weighted average maturity close to eight years. On the

contrary, the AUROC predictors are more heterogeneous. From six months to one-year-ahead, the

best predictors are real variables as the industrial production for Germany and France. However, also

intermediate goods and capital for the euro area seems to have excellent predictive power, especially

between twelve and eighteen months ahead. Also, it is fascinating to notice that beside real variables,

also monetary variables as the M3 aggregate, surveys as the industrial confidence indicators and ex-

pectations show an excellent forecasting ability. Finally, for longer horizons, even if the monetary

aggregate M1 shows some predictive power, the best predictors are some direct inflation measures

as for shorter horizons. It is interesting to notice that for shorter horizons, the best predictors were

the inflation measures of France and Italy, while for longer horizons, a German inflation measure

dominates.

Table 2 summarizes the 20 unique predictors delivered by the first selection step. Not surpris-

ingly, the selected predictors approximately coincide with variables considered as the main deter-

minants of inflation by established economic relationships—e.g., the New Keynesian Investment-

Saving (NKIS) curve, the New-Keynesian Phillips curve (NKPC), and the Taylor rule embedded

in standard three equations Dynamic Stochastic General Equilibrium (DSGE) models—as inflation
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Table 2: first step, unique variables. All criteria, horizons and loss-functions.

Price Interest rate Real Monetary Survey

HICP DE EA3Y Interm. goods M1 Industrial confidence
HICP FR EA5Y Capital M3 Price trends 12M
HICP IT EA7Y IP FR
DE CPI SA EA10Y IP DE
FR CPI SA DE10Y
IT CPI SA US10Y

Note: the table shows the best predictors for all the horizons. These are selected among the entire dataset
using a univariate probit model for forecasting the probability of having inflation below the 2% level. The
predictions are evaluated according to three different criteria (AUROC, MAE, RMSE), and the name of the
selected variables is reported. Each variable is declared only once, and it is allocated in one of the five
macro-categories (Price, Interest rate, Real, Monetary, Survey). EA, FR, DE, IT and US are the country
abbreviation for Eura Area, France, Germany, Italy and United States. M1 and M3 are the monetary ag-
gregates. IP stands for industrial production. CPI and HICP are price indices. “Intermediate” and “Cap-
ital” are real activity measures of intermediate good production and capital. “Industrial conf.” is a survey
measure of industrial confidence. Finally, the country abbreviations reported beside the number of years as
“DE10Y” stand for benchmark yields with a particular maturity.

itself, inflation expectations, interest rates, and output measures. The strong linkage between the se-

lected variables and economic theory builds confidence in the procedure and benefits from the inter-

pretation point of view. Also, it is valuable to notice that similar findings are common in the inflation

forecasting literature. In fact, various forms of the NKPC are often used as a proper reduced-form

model to forecast inflation (Faust and Wright, 2013).

In the second step, I fit a separate probit model to all possible combinations of the 20 predictors

selected in the first stage, plus a counterpart model for each combination augmented with the first

principal component extracted from the full dataset. Having twenty different variables plus the aug-

mented models implies that the number of possible combinations is extremely high. Therefore, I set

an upper bound of K2 = 10 maximum predictors. This restriction leads the algorithm to estimate

around 1.2 million models. However, to understand the true running time of the algorithm, the re-

cursive structure of the out-of-sample exercise should be considered. In particular, with T out = 121

points in the out-of-sample estimation and H = 8 forecasted horizons, the algorithm estimates ap-

proximately 1.2 billion models2. Table 3 shows the time employed for the combinations of each

variable group, including the time for the out-of-sample performance and the principal component

analysis. I evaluate each model for each horizon according to the AUROC, MAE, and RMSE. There-

2To deal with such complexity, I write the entire code in Julia Language (Bezanson et al., 2017), and I per-
form estimation parallelizing the code on an octa-core processor. Julia is a modern and flexible open source lan-
guage, which easily allows to perform parallel computing and to deal with computationally intensive problems. To-
gether with the paper, the ForecastingCombinations.jl package is released on my GitHub page at the following link
https://github.com/lucabrugnolini/ForecastingCombinations.jl. The package allows using both linear and probability
models in both steps, and the example shows an application on predicting US Non-farm payrolls with a linear model at
different h-steps ahead. Also, different loss functions can be easily added to the procedure. All the hyperparameters as
horizons or number of best variables to select are customizable.
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Table 3: number of variables, combinations and computational time for each combination in the
second step.

#Variables #Combinations Time

1 20×H × T out × 2 13s
2 190×H × T out × 2 117s
3 1, 140×H × T out × 2 12m
4 4, 845×H × T out × 2 48m
5 15, 504×H × T out × 2 2h34m
6 38, 760×H × T out × 2 6h28m
7 77, 520×H × T out × 2 13h02m
8 125, 970×H × T out × 2 19h20m
9 167, 960×H × T out × 2 28h30m
10 184, 756×H × T out × 2 31h20m

Total 616,665 ≈ 100h

Note: the table shows the number of variables used as regressors in a multivariate probit model (univariate
when #Variables is equal to one) for forecasting the probability of having inflation below the 2% level. The
total number of variables used is twenty and were selected in a univariate framework in a previous step. When
the #Variables is equal to K, there are

(
20
K

)
possible combinations. H is equal to eight and T out = 121. The

number of combinations is multiplied by two to account for the alternative models including the first princi-
pal component of the entire dataset. The table also shows the amount of time employed by the Julia code for
each particular number of combinations.

fore, the second stage of the selection process returns a set of H models for each loss-function. The

best-selected models are reported in table 4 to 6. Depending on the criterion chosen, the results are

mostly heterogeneous, both in the number of selected variables and the inclusion of a common factor.

Also, to have a benchmark for the comparison, I build a naive model fitting a binomial probit model

on the first lag of the EA HICP and compare the performance of each model against this one. The

score is reported as a ratio between the two models. For the AUROC, a ratio larger than one implies

that the selected model outperforms the naive. For the MAE and RMSE, the opposite is true. Finally,

I select only models with maximum AUROC and minimum MAE and RMSE for each horizon.

The tables show some common characteristics among the selected specifications which are worth to

highlight. First, according to all criteria, the selected models are always able to outperform the naive

model. However, for shorter horizons, the naive model is more difficult to defeat. For longer hori-

zons, the selected models are usually more precise. Secondly, for some specific horizons, the three

criteria agree on both the number and the variables to include. Two clear example are the horizons

h = 6 and h = 18. Thirdly, The AUROC and the RMSE are more parsimonious criteria regarding

the number of selected variables, while the MAE is the least. Fourth, on average, it seems that all

models use predictors coming from different classes, implying that different information is useful in

improving the prediction. Figure 1 shows the score as the ratio between each of the selected model

against the naive model. The AUROC is reported in terms of reciprocal to enhance comparability.

A score lower than one implies that the chosen model outperforms the naive. As expected, the naive

model is performing better in the very short horizons. For h = 1 the best model selected according
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Table 4: results from the second step of the variable selection procedure. AUROC criteria, all
horizons.

h = 1 h = 3 h = 6 h = 9 h = 12 h = 15 h = 18 h = 24

AUROC 1.02 1.05 1.19 1.63 1.64 1.81 1.54 1.51

Factor 0 1 1 1 1 0 1 0
#Var 5 9 8 10 8 7 8 8

Capital M1 Capital Inter. Inter. Ind.Conf. Capital M3
Ind.Conf. M3 M3 Capital Capital M1 M1 HICP DE
IP FR IP DE IP DE Ind.Conf. Ind. Conf. M3 M3 HICP FR
IT CPI SA IP FR IP FR M3 M3 EA10Y IP DE HICP IT
FR CPI SA US10Y HICP IT HICP DE IP FR IT CPI SA IP FR DE10YT

DE10YT EA7Y US10Y US10Y FR CPI SA US10Y EA3Y
EA3Y DE CPI SA DE10YT DE10Y PRICE 12M EA10Y EA5Y
EA7Y PRICE 12M EA10Y EA10Y FR CPI SA FR CPI SA
EA10Y DE CPI SA

PRICE 12M

Note: the table shows the best model for each horizon h, selected among
∑10

k=1

(
20
k

)
models. The variables are used as

regressors in a multivariate probit model for forecasting the probability of having inflation below the 2% level according
to the AUROC criteria. The table also shows the score of the models reported as a ratio between the selected model and
the naive. For the AUROC, a ratio larger than one implies that the selected model outperforms the naive. For the MAE
and RMSE, the opposite is true. Also, the table highlights the number of variables in the model and whether the forecast
improves including the first principal component of the original dataset (“Factor” equal to one implies that including the
factor enhances the prediction).

Table 5: results from the second step of the variable selection procedure. MAE criteria, all horizons.

h = 1 h = 3 h = 6 h = 9 h = 12 h = 15 h = 18 h = 24

MAE 0.25 0.39 0.17 0.11 0.09 0.15 0.12 0.02

Factor 1 1 1 1 1 1 1 1
#Var 10 10 8 10 10 10 8 10

Inter. Inter. Capital Inter. Inter. Inter. Capital Capital
Capital Capital M3 M1 Ind.Conf. Ind.Conf. M1 M1
M3 Ind.Conf. IP DE M3 M3 M1 M3 M3
HICP DE M3 IP FR IP FR IP DE M3 IP DE IP DE
DE10YT HICP FR HICP IT HICP DE IP FR HICP DE IP FR IP FR
EA3Y HICP IT EA7Y HICP FR HICP DE HICP FR US10Y EA5Y
EA5Y EA3Y DE CPI SA HICP IT DE10YT US10Y EA10Y EA7Y
EA7Y EA5Y PRICE 12M EA3Y IT CPI SA EA7Y FR CPI SA EA10Y
IT CPI SA EA7Y EA7Y DE CPI SA EA10Y DE CPI SA
DE CPI SA DE CPI SA PRICE 12M FR CPI SA FR CPI SA FR CPI SA

Note: the table shows the best model for each horizon h, selected among
∑10

k=1

(
20
k

)
models. The variables are used as regres-

sors in a multivariate probit model for forecasting the probability of having inflation below the 2% level according to the MAE
criteria. The table also shows the score of the models reported as a ratio between the selected model and the naive. For the AU-
ROC, a ratio larger than one implies that the selected model outperforms the naive. For the MAE and RMSE, the opposite is true.
Also, the table highlights the number of variables in the model and whether the forecast improves including the first principal
component of the original dataset (“Factor”equal to one implies that including the factor enhances the prediction).

12



Table 6: results from the second step of the variable selection procedure. RMSE criteria, all hori-
zons.

h = 1 h = 3 h = 6 h = 9 h = 12 h = 15 h = 18 h = 24

RMSE 0.64 0.75 0.35 0.31 0.37 0.39 0.21 0.16

Factor 0 0 1 1 1 0 1 1
#Var 8 4 8 8 10 6 8 10

Ind.Conf. Capital Capital Inter. Inter. Capital Capital Capital
M1 Ind.Conf. M3 M1 Ind.Conf. IP DE M1 M1
M3 EA7Y IP DE M3 M3 IP FR M3 M3
IP FR FR CPI SA IP FR HICP IT IP DE HICP DE IP DE IP DE
US10Y HICP IT DE10YT IP FR EA10Y IP FR IP FR
EA5Y EA7Y EA10Y HICP DE PRICE 12M US10Y EA5Y
EA10Y DE CPI SA FR CPI SA DE10YT EA10Y EA7Y
FR CPI SA PRICE 12M PRICE 12M IT CPI SA FR CPI SA EA10Y

DE CPI SA DE CPI SA
FR CPI SA FR CPI SA

Note: the table shows the best model for each horizon h, selected among
∑10

k=1

(
20
k

)
models. The variables are used as regres-

sors in a multivariate probit model for forecasting the probability of having inflation below the 2% level according to the RMSE
criteria. The table also shows the score of the models reported as a ratio between the selected model and the naive. For the AU-
ROC, a ratio larger than one implies that the selected model outperforms the naive. For the MAE and RMSE, the opposite is true.
Also, the table highlights the number of variables in the model and whether the forecast improves including the first principal
component of the original dataset (“Factor” equal to one implies that including the factor enhances the prediction).

to the AUROC is only slightly better. However, since h = 3 the models selected using different

criteria considerably outperform the naive model and present massive increases until h = 9. Then,

depending on the criterion, the curve is stable or slightly increasing/decreasing.

13



Figure 1: relative model loss in terms of AUROC, MAE, and RMSE.
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Note: the figure shows the score of the models reported as a ratio between the selected model and the naive according to
the AUROC reciprocal (solid blue line), MAE (dash-dot green line) and RMSE (dashed red line). For all criteria, a ratio
below one implies that the selected model outperforms the naive.

3.2 Forecasting performance

In this section, I analyze the in-sample and out-of-sample performance of the models selected in the

previous section. I use the in-sample fit to get a general feeling of the overall performance of the

models. The reason is also related to the lack of a long time series for the particular application. In

fact, there are only a few separate periods in the out-of-sample exercise in which inflation is below

the 2% level. However, as I am mainly interested in forecasting, after assessing the in-sample fit,

I evaluate the out-of-sample performance of the models. Also, in a true out-of-sample exercise, I

predict the probability of having low inflation from March 2017 to March 2019.

3.2.1 In-sample analysis

I start analyzing the in-sample results. I focus mainly on the probability that inflation is below the

2% level. The reason is that the downside risk seems the major concern in the EA. However, given

that I am forecasting the whole density of the process, the upside risk can always be computed as

the complement of the downside probability. Figures 2 and 3 show the in-sample fit of the models.

For each horizon, I plot the three best models selected according to AUROC, MAE, and RMSE. The

shaded area represent periods of inflation lower than 2%. Except for very short periods, the first

part of the sample is mainly characterized by having inflation above the threshold. However, the

rapid changes in the regimes create many false signals in the estimated probabilities. This feature is

evident, especially at shorter horizons. Starting from 2008 the series is characterized by prolonged

14



periods of inflation above/below the threshold, which substantially reduce false signals. Overall,

Figure 2: in-sample model fit, horizons 1, 3, 6, and 9.
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Note: in-sample-model-fit for horizons h = 1 to h = 9. Each panel shows the best model selected using AUROC (solid
blue lines), MAE (dash-dot green lines) and RMSE (dotted red lines). The shaded area represent periods with inflation
below the 2% level.

Figure 3: in-sample model fit, horizons 12, 15, 18, and 24.
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Note: In-sample-model-fit for horizons h = 12 to h = 24. Each panel shows the best model selected using AUROC
(solid blue lines), MAE (dash-dot green lines) and RMSE (dotted red lines). The shaded area represent periods with
inflation below the 2% level.

the models have a satisfactory in-sample prediction ability. Also, the models chosen with the three

criteria are very similar, and on many occasions, the estimated probabilities overlap—e.g., horizons

h = 6 and h = 18.
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3.2.2 Out-of-sample analysis

After assessing the in-sample fit of the selected models, I evaluate their out-of-sample performance.

For each set of variables, I pre-estimate the model from January 1999 to February 2007 and compute

a direct forecast up to the end of the sample (March 2017). Figure 4 and 5 show the out-of-sample

estimates of the different models for all the horizons. The sample-period used for the estimation

presents two extended periods of inflation below the 2% level divided by an interval of inflation

above or equal to 2%. These periods partially overlap with the great recession (inflation below

the target starts in December 2008) and to the post-European debt crisis (January 2013). From

Figure 4: out-of-sample forecast, horizons 1, 3, 6, and 9.
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Note: out-of-sample forecast for horizons h = 1 to h = 9. Each panel shows the best model selected using AUROC
(solid blue lines), MAE (dash-dot green lines) and RMSE (dotted red lines). The shaded area represent periods with
inflation below the 2% level.

a visual inspection, the out-of-sample predictions do not show severe lacks, and the overall fit is

pretty good. However, as usual in out-of-sample forecasting, the goodness of the projections is a

function of the horizons, and overall results are heterogeneous. At one-step-ahead, the three models

have a performance which is exceptionally close, and timely catch the turning points in the inflation

probability. At h = 3, the RMSE is the best model, succeeding in capturing the first-period of low

inflation and start rising slightly in advance with respect to the last one. The MAE model is slightly

delayed with respect to the turning points, while the AUROC model delivers a poor job. At horizon

six and eighteen the three criteria have selected the same variables among all possible combinations.

This choice implies that the selection is exceptionally robust across the different loss functions. For

what concern the remaining horizons, the MAE and RMSE models are the best performers, and in

many occasions, the variables selected by the two coincide. From the other side, the AUROC is poor
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Figure 5: out-of-sample forecast, horizons 12, 15, 18, and 21.
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Note: out-of-sample forecast for horizons h = 12 to h = 24. Each panel shows the best model selected using AUROC
(solid blue lines), MAE (dash-dot green lines) and RMSE (dotted red lines). The shaded area represent periods with
inflation below the 2% level.

performing, especially at horizons h = 15 and h = 24. The main problem seems to be related to the

high autocorrelation of the estimated probabilities which miss the turning points. At the opposite,

the other models do a solid job in capturing the switch from one state to the other.

To investigate this finding, table 7 summarizes the results of all the models, criteria, and horizons

with respect to the naive model. The three panels show the results for the three criteria. The labels

AUROC, MAE, and RMSE highlight the set of models chosen to maximize/minimizing these crite-

ria. Therefore, by definition, for the AUROC panel, the set of models which attains the best results

is the AUROC column (first panel, first column—blue), for the MAE panels is the MAE column

(second panel, second column—green) and for the RMSE panels is the RMSE column (third panel,

third column—red). It is interesting to notice that while MAE and RMSE models are very close

to the AUROC models in terms of the score, the opposite is not true, and AUROC models are very

distant from MAE and RMSE models. Oddly, at h = 3, according to both the MAE and RMSE

criteria the AUROC model is outperformed even by the naive model (second and third panel). The

same happens to very short horizons for the MAE in terms of AUROC (first panel, 0.99 and 0.96).

However, the distance between the two models is much smaller (one to four percentage points).
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Table 7: results from the out-of-sample forecast. All models, criteria, and horizons.

Horizon AUROC MAE RMSE

AUROC MAE RMSE AUROC MAE RMSE AUROC MAE RMSE
h = 1 1.02 0.99 1.02 0.46 0.25 0.41 0.68 0.73 0.64
h = 3 1.05 0.96 1.04 1.41 0.48 0.59 1.43 0.99 0.75
h = 6 1.19 1.19 1.19 0.17 0.17 0.17 0.35 0.35 0.35
h = 9 1.63 1.59 1.6 0.39 0.11 0.11 0.58 0.38 0.31
h = 12 1.62 1.57 1.57 0.3 0.09 0.09 0.46 0.37 0.37
h = 15 1.81 1.55 1.79 0.69 0.15 0.28 0.9 0.46 0.39
h = 18 1.54 1.54 1.54 0.12 0.12 0.12 0.21 0.21 0.21
h = 24 1.51 1.48 1.48 0.86 0.02 0.02 1.0 0.16 0.16

Note: the table shows the scores for each model selected according to AUROC, MAE, and RMSE and for
each horizon h. The total number of selected models is 24, and each chosen model is evaluated accord-
ing to all the three possible criteria. The reported number is the ratio of the score of the selected model
over the score of a univariate probit model which uses as regressor the first lag of the HICP inflation
(naive model). For the AUROC, a score higher than one implies that the selected model outperforms the
naive model, while for MAE and RMSE the opposite is true.

3.3 The Deflationary Pressure Index

As a final exercise, in this section, I create an index to signal the probability of having low inflation

in the medium run. I call the index Deflationary Pressure Index (DPI) given it signals the average

probability of moving toward an undesired inflation territory from the downside. This index can

supply a valid in-house alternative to the SPF probability forecasts and help in dealing with the

generic medium-term horizon considered by the European Central Bank to undertake policy actions.

Equation (4) shows the DPI. The index is a simple average (ωh = 1) over the best model forecasts at

each horizon h. In particular, the index is built having in mind a researcher that at time t is forecasting

from one to two years ahead, and averaging the predictions. The value of the index is recorded at

time t. In this way, each point of the DPI represents the probability of having inflation below the 2%

level over the next two years.

DPILt =
1

H

∑
h

Ŷ L,h
t+h h = [1, 3, 6, 9, 12, 15, 18, 24] , L = {AUROC,MAE,RMSE} (4)

I avoid averaging across criteria to compare the three different indices. Figure 6 shows the con-

structed Deflationary Pressure Indexes against the periods in which inflation is below the 2% level.

The chart presents three prominent features; first, the movements in the indices are extremely close.

This characteristic can be considered as a signal of robustness, as the three are created using different

loss functions. Secondly, the indices seem to have good predicting power. This feature is evident in

the period between 2009 and 2013, as they start moving in the correct direction before the regime

switch in inflation. Finally, as the three indices signal a very high probability of having inflation

below the 2% level, I decide to investigate whether other measures support this finding. For this
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Figure 6: Deflationary Pressure Index.
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Note: Deflationary Pressure Index. This indicator is the simple average of the out-of-sample forecasts for all horizons.
AUROC (solid blue line), MAE (dash-dot green line), RMSE (dotted red line) highlight the index made from models
selected independently with these three criteria. The shaded area represent periods with inflation smaller than 2%.

reason, in the next section, I compare the DPI against a probability measure constructed from the

ECB SPF probabilities.

3.4 ECB Survey of Professional Forecasters: a comparison

In this section, I compare the DPI against the ECB Survey of Professional Forecasters. Starting from

December 2000 the SPF is quarterly collected by surveying more than 80 professional forecasters3.

In a standard survey, forecasters express their point forecasts for inflation (as well as GDP growth

and unemployment) over a specific time horizon. Also, they are asked to provide their probabilities

for different inflation outcomes. For example, they are asked to report the likelihood that the year-

on-year EA HICP inflation is below, in between or above certain thresholds. The thresholds range

from -1% to 4% stepping by 0.4%, for a total of 12 bins. Probabilities have to sum to one, and the

final measure is an average of all the forecasts.

To create an index comparable to the DPI, I construct a new measure by cumulating the proba-

bilities of having inflation below the 2% level. These range between -1% and 2% and refer to a 24

months horizon. However, given that the SPF is quarterly collected, the comparison involves mixed

frequency. Therefore, figure 7 shows the quarterly SPF median survey forecast (yellow diamonds)

against the monthly Deflationary Pressure Index. Due to the lower-frequency nature, the SPF is more

autocorrelated than the DPI. This feature is also responsible for missing the turning points in the in-

3A detailed list of the participating organizations is available on the ECB website - SPF list.
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Figure 7: Deflationary Pressure Index against ECB SPF.
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Note: Deflationary Pressure Index. This indicator is the simple average of the out-of-sample forecasts for all horizons.
The indices are plotted against the ECB Survey of Professional Forecasters (SPF) 24 months-ahead predictions (yellow
diamonds). AUROC (solid blue line), MAE (dash-dot green line), RMSE (dotted red line) highlight the index made from
models selected independently with these three criteria. The shaded area represent periods with inflation smaller than
2%.

flation regimes. The strong autocorrelation is especially evident in the last two transition periods.

However, apart from this characteristics, the two measures are incredibly similar. This feature is true

especially between 2013 and 2017. Finally, it is interesting to notice that in the final part of the se-

ries, both indices display a rapid increase in the probabilities. However, at the end of the sample, the

two measures slightly diverge, with the SPF measure declining to 75%. Nevertheless, both models

confirm a high probability of inflation below the 2% level up to 2019.

4 Conclusion

Central Banks worldwide target an optimal inflation level to maintain price stability. In this respect,

they face two main challenges. First, they have to rely on forecasts, since monetary policy affects

output and prices with a lag. Secondly, they cannot rely on a predetermined horizon, since price

stability has a medium-term orientation. Against this background, I propose a methodology based

on best subset selection to build an index to assess and forecast the probability of having inflation

around a certain threshold. In particular, I apply it to the euro area case, and create an index to predict

the probability of having EA HICP below the 2% level over the next two years—i.e., the Deflationary

Pressure Index (DPI). The main idea related to this measure is that capturing the probability of

having inflation below the target can support policymakers regarding monetary policy decisions. In

fact, central banks can be interested in the medium-run probability of deviating from the target as an
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additional measure to build confidence in their actions. In the present context, the index shows that

it is unlikely to have inflation in the medium term above the 2% level before March 2019.
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A Appendix — AUROC review

In a discrete context, as the case of forecasting inflation probability, the prediction exercise is closer

to a classification problem. Therefore, given the estimated probabilities, a researcher assigns each

forecast to the correct class {0, 1}. For this class of problems appropriate loss functions have been

extensively studied, and, among these, a particularly well-tailored criterion for binary classification

problems is the Area Under the Receiver Operating Characteristics (AUROC) function. The AUROC

ranks models according to their ability to classify observations among the entire spectrum of cutoff

points. In particular, in a first step, the model ability to assign an observation to the correct class (True

Positive, TP — also called sensitivity) or to the wrong class (False Positive, FP — also called fall-

out) is evaluated for all possible thresholds T i. The set of thresholds is approximated by a discrete

variable bounded between zero and one, as showed in equation (A.1).

Ŷt = 0 if Ŷt < T i

Ŷt = 1 if Ŷt ≥ T i

(A.1)

Where T i ∈ [0, 1] , i = 1, 2, ..., I . Therefore, in the first step, a researcher estimates a discrete

dependent variable model and compare the predictions against a threshold T i. Depending on the

threshold, each prediction can be classified, and the classification can be compared against the true

one. Repeating this process for all possible T i allows assessing the model classification ability.

The result can be represented in a plane having the percentage of false positive and true positive

on the x and y axis (FP(T i), TP(T i)). The line connecting the points is called Receiver Operating

Characteristics (ROC) function. Figure A.1 shows the ROC curve for different univariate probit

models estimated with the discretized EA HICP inflation year-on-year as the dependent variable (as

in appendix C), and all the variable in the dataset described in appendix B as regressors. The chart

can be interpreted as follows; first, the best model attains 100% TP and 0% FP, which is the upper-

left corner of the chart. This point gives the direction toward which the curve should increase to have

a better performing model—i.e., red curves. Secondly, by moving along each curve, a researcher

can gather the model trade-off between true and false positives. Moving from left to right tells the

percentage of false positives that have to be allowed to increase the rate of true positives. Third,

in the (FP(T i),TP(T i)) plane, the 45-degree line is a random guess equivalent, and it is often used

as a reference line—i.e., 50% probability of having TP and FP. When the ROC curve is below the

45-degree line, a researcher should revert the classification scheme—i.e., green and light-blue lines

in the figure. Reverting the classification scheme flips the curve symmetrically around the 45-degree
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Figure A.1: ROC curve.
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Note: ROC curve computed with the estimated probability of having inflation below the 2% level by using all the variables
available in the dataset and a constant in a univariate binomial probit model. Curves closer to the upper-left corner
highlight models with a better performance.

line. Fourth, a scalar measure of the goodness of the model is the area under the ROC curve. A larger

area implies a better model. A commonly used estimator of the ROC area is the non-parametric

AUROC estimator, as shown in equation (A.2).

AUROC =
1

n0n1

n0∑
i=1

n1∑
j=1

(
Xi > Zj +

1

2
(Xi = Zj)

)
, AUROC ∈ [0.5, 1] (A.2)

Where n0, n1 are respectively the zeros and ones according to the correct classification. Xi is the

estimated probability corresponding to the correct ones and Zj corresponding to the correct zeros.

The AUROC ranks models from the one with the largest area to the one with the smallest, and it

ranges from 0.5 to 1. The advantage of using the AUROC is that models can be evaluated without

selecting an arbitrary threshold. Despite its proven ability, the AUROC has only been used in recent

times in the economic literature (Berge and Jordá, 2011; Liu and Moench, 2016).

B Appendix — Data

I build a large dataset comprising around 100 monthly variables at the national and euro area level

starting in January 1999 and ending in March 2017 (219 observations). Table B.1 shows the complete

monthly dataset, the respective identification codes and transformations. All the data are provided

26



by Thomson Reuters Eikon and Datastream4. The dataset has five different broad categories:

1. Real indicators: these correspond to real economic activity measures as production, consump-

tion, government spending, import and export activities for the EA and the largest European

countries.

2. Price indicators: these correspond to seasonally and non-seasonally adjusted indices of con-

sumer prices comprising different aggregate categories at both EA and national level.

3. Monetary aggregates: these are the monetary aggregates M1, M2, and M3 which include

currency in circulation, deposits and liquid financial products.

4. Financial variables: these include the European Overnight Index Average (EONIA), the Euro

Inter-Bank Offered Rate (EURIBOR) at different maturities, the Nominal and Real Effective

Exchange Rate (NEER-REER), the US Fed Fund rate, European and US bonds, stock indices,

volatility indices, and oil prices.

5. Surveys: these correspond to confidence indices and professional forecaster surveys.

4The only exception is the Wu and Xia (2016) shadow rate measure for the euro area as in Wu (2017) which is
available on their web-page.
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Table B.1: complete monthly dataset. Variable names, identification and transformation codes.

Variable RIC/DS ID Trans. Variable RIC/DS ID Trans.

US10Y US10YT=RR 1 HICP EA aXZCPIHICP/C 3
EURIBOR3M EURIBOR3MD= 1 IP EA aXZCINDG/CA 3
EURIBOR6M EURIBOR6MD= 1 Consumers good aXZPDAGCGS/A 3
EURIBOR1Y EURIBOR1YD= 1 Durable aXZPDAGCDRB/A 3
DE stock .GDAXI 3 Non durable aXZPDAGCNDR/A 3
ES stock .IBEX 3 Intermediate aXZPDAGINTG/A 3
FR stock .FCHI 3 Energy aXZPDAGENE/A 3
IT stock .FTMIB 3 Capital aXZPDAGCAPG/A 3
DE2YT DE2YT=RR 1 Construction aXZIPCON/A 3
DE5YT DE5YT=RR 1 Manufacturing aXZIPMAN/A 3
DE10YT DE10YT=RR 1 Unemploy. rate EA aXZUNR/A 1
ES5YT ES2YT=RR 1 Credit gen gov aXZCRDGOV/A 3
ES10YT ES10YT=RR 1 Car regist aXZCRDRG/A 3
FR2YT FR2YT=RR 1 Business climate aXZBUSCLIM 6
FR5YT FR5YT=RR 1 Consumer conf. aXZECOSE 6
FR10YT FR10YT=RR 1 Industrial conf. aXZBSMFGCI/A 6
IT2YT IT2YT=RR 1 Retail conf. aXZBSSVRTCI/A 6
IT5YT IT5YT=RR 1 Construction conf. aXZBSCSCI/A 6
IT10YT IT10YT=RR 1 Service conf. aXZBUCFM/A 6
NL2YT IE2YT=RR 1 Core CPI ea aXZCCORF/C 3
NL5YT NL5YT=RR 1 Eonia aXZONIA 1
NL10YT NL10YT=RR 1 M1 aXZM1 3
EA short repo RC2AALM 1 M2 aXZM2 3
EA2Y EMECB2Y. 1 M3 aXZM3 3
EA3Y EMECB3Y. 1 Neer aXZINECE/C 3
EA5Y EMECB5Y. 1 US ff rate aUSFEDFUND 1
EA7Y EMECB7Y. 1 IP DE aDECINDG/A 3
EA10Y EMGBOND. 1 IP ES aESCINDG/A 3
Loans nonfin EMEBMC..A 3 IP FR aFRCINDG/A 3
Loans hsld EMEBMH..A 3 IP IT aITCINDG/A 3
Loans non-mfi EMEBMEO.A 3 Unemploy. DE aDECUNPQ/A 1
Loans mfi EMECBXLMA 3 Unemploy. ES aESCUNPQ/A 1
IT CPI SA ITCCPI..E 3 Unemploy. FR aFRCUNPQ/A 1
IT core CPI SA ITCCOR..E 3 HICP DE aITUNRM/A 3
ES CPI SA ESCCOR..E 3 HICP ES aESHICP 3
DE CPI SA BDCONPRCE 3 HICP FR aFRHICP 3
DE CPI core SA BDUSFG10E 3 HICP IT aITHICP 3
FR CPI SA FRCONPRCE 3 Core CPI DE aDECCORF/C 3
FR core SA FRCPUNDEE 3 Core CPI FR aESCCORF/C 3
Price trends 12M EMZEWCP.R 6 Core CPI IT aITCCORF/C 3
Econ12M EKTOT4BSQ 6 EA stock .STOXX50E 3
Unemp.12M SA EKTOT7BSQ 6 EA bank stock .SX7P 3
REER EMI..RECE 3 US stock .SPX 3
US crude USSCOP.BP 3 US vol .VIX 3
Shadow - 1 Crude LCOc1 3

Note: the table shows the entire dataset along with the Thomson Reuters Eikon and Datastream identifica-
tion codes for each variable. The transformation codes from 1 to 6 correspond to level, monthly difference,
annual difference, log level, monthly log difference, and annual log difference. The shadow rate for the EA
is provided by Wu (2017) and available on her web-page.
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C Appendix — Discrete inflation measure

In this section, I describe the process employed to build the dependent variable. In fact, the main

difference concerning predicting inflation probabilities and more standard variables—e.g., predict-

ing recession probabilities—is the choice of the dependent variable. Models tailored to predict the

recession probabilities use a binary measure as the dependent variable. This measure is computed

by independent research organizations which assess and release a discrete variable to track recession

periods.5 For inflation, a clear counterpart does not exist. Nevertheless, a very satisfying and intu-

itive alternative can be created by clustering inflation realizations above and below the central bank

target. In particular, within the euro area, many inflation metrics exist. However, the ECB definition

of the inflation target is in terms of year-on-year change in the EA Harmonized Index of Consumer

Prices (HICP). There are other popular indicators6. However, as the paper focuses on forecasting

inflation from a central bank viewpoint and the ECB target is in terms of HICP, I will only focus

on this measure. To discretize the inflation measure and create the binary dependent variable (Yt), I

divide the HICP year-on-year change πt into two different categories. I choose as a threshold the 2%

level, as many central banks have this cutoff as a target, and I use it as an approximation for the ECB

target. Thus, the dependent variable looks as follows:

• Inflation below the confidence zone (Yt = 1 if πt < 2%).

• Inflation above the confidence zone (Yt = 0 if πt ≥ 2%).

The first panel of figure C.1 shows the year-on-year HICP for the EA (πt) from January 1999 to

March 2017. The solid blue line shows the monthly level in percentage points; the shaded are

highlight periods in which inflation is below the 2% level. By contrast, the others show periods

in which HICP is above or equal to 2%. The second panel of figure C.1 shows the HICP sample

distribution. The colors highlight the composition of the discretized HICP variable using 2% as a

cutoff point. The blue bars (left-hand-side) show the portion of the distribution below the threshold.

The red bars (right-hand-side) display the observations above or equal to it. The y-axis shows the

absolute frequency of each bin. It is easy to notice that the binary variable for inflation is well

balanced along the entire sample. It displays 112 observations below the threshold and 107 above.

From the chart, it is easy to notice that the mass tends to locate around the cutoff point. Indeed,

5For example, in the euro area, the recession indicator is computed by the Centre for Economic Policy Research
(CEPR), which is an independent organization. In the United States, the National Bureau of Economic Research (NBER)
performs the same task.

6For example, the GDP deflator or the core inflation. The former is the ratio between nominal and real GDP. The
latter is the HICP excluding food and energy.
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Figure C.1: EA HICP, year-on-year.

Note: the upper panel shows the y-o-y HICP for the EA (solid blue line) and highlights the 2% inflation level (red dashed
line). The lower panel shows the inflation distribution. Observations greater or equal than 2% are highlighted by red
bars, while data points lower than 2% are reported as blue bars.

the mode is located slightly below the 2% level, consistently with the ECB mandate. Also, it is

interesting that while the right tail of the distribution concentrates around the threshold, the left tail

is longer and exhibits more dispersion. This characteristic is mainly due to the recent deflationary

period experienced by the euro area, which has led inflation in negative territory for the first time

since the great recession.
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